


Over the past 8 years rich signal processing has been revolutionized by new deep neural
network approaches. These have consistently outperformed classical algorithms for
classification, detection, and transformation algorithms on input sources such as sounds,
images, radar, biosignals and more.

There is a significant amount of interest in bringing these approaches to highly energy
constrained edge devices. These include IoT sensors such as image-based building sensors,
wearable devices such as wristbands or smart glasses and hearable products such as earbuds
and headsets.

Figure 1. GAP9 Use Cases

In all of these products power is extremely limited, either because the product needs to operate
for its entire lifetime on a preinstalled battery or because the size of the product greatly restricts
the capacity of the battery that can be embedded in it. We see this new need as the third wave
of AI, and we have been focused on it for 5 years:

1) The first wave was neural network training and inference on large servers in data
centers

2) The second wave was moving AI from cloud to high powered edge devices such as
mobile phones, security cameras and edge servers

3) The third wave is bringing ultra efficient AI inference and signal processing to
highly energy constrained devices

The new algorithms available to designers, be they based on deep neural networks or
traditional digital signal processing, make large demands on embedded processors, which
need to deliver bursts of significant processing and meet stringent latency requirements
while controlling power consumption. Moreover, just adding a neural network accelerator
does not resolve the intricate power issues in power constrained devices. In a tiny, power

2 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



constrained device all the parts of its operation must be designed and optimized to save
energy.

The designers of these new intelligent, power constrained devices come from diverse
backgrounds. The data scientists are working with tensor processing frameworks such as
TensorFlow or PyTorch. The DSP algorithm designers are working in analytical packages such
as MathWorks while the embedded application designers expect familiar C/C++ tools. In many
cases, and particularly with data scientists, designers may not be familiar with the constraints
of deeply embedded systems. Next generation processors must be easy to use and provide
the tools that developers are expecting so they can keep their way of working while ensuring
that code produced is as efficient as possible. They must also ensure that it is easy and cost
effective to integrate legacy code for elements such as communications protocols that are less
demanding from an energy perspective.

All of this needs to occur in a highly fluid environment where state of the art in signal analysis
and inference using machine learning is changing every week! Flexibility to adopt the latest
available techniques is key.

GreenWaves’ GAP9 processor has been designed from the ground up to address this
multi-dimensional computing requirement. While GAP9 shares some system components with
traditional microcontroller units (MCUs) its architecture is quite unique, enabling a revolution in
the performance of extremely energy constrained devices. In this document we look at GAP9
from an application perspective. What is different? How does this help the device developer?
We will also give an overview of the tools that are provided in the GAP SDK and how these
ease development and allow designers with different backgrounds to exploit GAP9 to the
maximum.

The building blocks
GAP9 is made of 3 fundamental building blocks, an MCU type controller that we call the Fabric
Controller, a smart peripheral controller (the µDMA) integrating a sample by sample audio
Smart Filtering Unit (SFU) and a parallel compute engine that we call the Cluster. The Fabric
Controller (FC) is responsible for managing peripheral devices and controlling application
execution on GAP9. The µDMA allows autonomous, low energy peripheral management and
on the fly calculation through specialized processing blocks such as the SFU for ultra-low
latency tasks such as Adaptive Noise Cancellation. The cluster provides a flexible, on demand,
high performance programmable calculator for any task that demands significant compute
resources such as Digital Signal Processing or Machine Learning algorithms.

3 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



Figure 2. GAP9 Architecture Overview

GAP9 makes extensive use of Dynamic Frequency and Voltage Scaling (DVFS) in multiple
different zones (known as Domains) of the chip. This allows elements of the chip to be entirely
switched off when not in use but also the actual capabilities and energy consumption to be
precisely tuned to the requirements of the task being executed.

When a voltage domain is active GAP9 uses automatic clock gating to stop clocking smaller
functional blocks when they are not in use further reducing power consumption.

GAP9 has a rich set of peripheral interfaces including a 2 lane CSI2 interface, parallel camera
interface and 3 Serial Audio Interfaces capable of handling up to 16 TDM channels and
incorporating 3 input and 1 output PDM channels per interface.

The final building block for GAP is an SDK, which follows two fundamental philosophies:

- Use tools that are familiar to the targeted developer
- Avoid black boxes that the developer cannot properly debug

Let’s look at these elements in more detail.

The Fabric Controller
The FC contains a single core that is responsible for coordinating the activity on GAP9. All
GAP9’s cores in the FC and cluster are based on the RISC-V ISA extended with custom
instructions for operations such as MACs, zero-cycle loops, saturation and clipping operations,
bit level arithmetic and lightweight 8-bit and 16-bit vector instructions. The use of a single core
design simplifies development - only a single compiler toolchain is required.

4 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice

https://en.wikipedia.org/wiki/Dynamic_frequency_scaling


All the cores in GAP9 include a Transprecision Floating Point Unit handling IEEE 32-bit, 16-bit
and BFloat16 floating point numbers. The vector unit in the cores can handle vectors of
IEEE-16 or BFloat16 operands.

The FC area of the chip also contains the main memory made up of 1.5MB of RAM, which can
optionally be retained in blocks when in low power modes and a 2MB area of non-volatile
memory using state-of-the-art eMRAM technology. eMRAM, as opposed to Flash memory,
provides high speed read and write access, which gets close to the performance of RAM. It’s
ideal for storing filter coefficients for neural network tasks. It also can be used to store firmware
enabling reduced system cost when no external memory is necessary.

Figure 3. GAP9 Memory Architecture

GAP9 has two1 external memory interfaces that can be individually configured to support Octo-
or Quad-SPI, HyperBus or SD memories. The total bandwidth of each external memory
interface is 370MB/sec. GAP9 incorporates a virtual memory mapping capability that allows
both external and internal memories to be mapped into GAP9’s memory space with caching in
the L2 area. This allows execute-in-place execution of code contained in external memory.

All of the power supplies and oscillators necessary for GAP9 are controlled by the FC via an
integrated power management system. The FC can enter a deep sleep state consuming a few
µA of current from which it can wake up in a few milliseconds. It also has a low power state
consuming under a mW from which it can quickly configure peripherals to start acquiring data
before the chip is fully awake.

1 Only 1 is available in WL-CSP package

5 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice

https://en.wikipedia.org/wiki/Single-precision_floating-point_format
https://en.wikipedia.org/wiki/Half-precision_floating-point_format
https://en.wikipedia.org/wiki/Bfloat16_floating-point_format


The µDMA
The FC talks to peripherals via an intelligent peripheral controller that we call a Micro-DMA
(uDMA). This differs from a classic DMA unit in that it is not executing transactions over a
shared system bus. The uDMA has dedicated channels to the L2 memory and a series of
dedicated DMA channels, individually connected to and controlled by peripherals. This reduces
contention between peripheral dataflow and internal activity improving performance and
reducing power consumption.

The uDMA is capable of autonomously executing complex transactions with an ability to
process information passing through it on-the-fly. This processing capability ranges from
timestamping information arriving from multiple interfaces and on-the-fly AES 128/256
encryption and decryption to complex, ultra-low latency sample by sample audio filtering that
can be used to implement state-of-the-art Active Noise Cancellation. We call this audio filtering
unit the Smart Filtering Unit and will explain it in more detail later in this document.

Figure 4. MicroDMA Architecture

The uDMA reduces the power consumption of data acquisition and transmission by reducing
the need for (or entirely eliminating) intervention by the processing cores in GAP9. It also
enables ultra-low latency on-the-fly data processing even directly between two interfaces.

The MicroDMA is connected to a rich set of interfaces including ones specialized for sound
sources and sinks (SAI) and cameras (MIPI CSI2 & CPI) and general purpose interfaces such
as SPI, UART, I2C & I3C and GPIO.

6 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



The Cluster
GAP9’s cluster includes 9 RISC-V cores (identical to the FC core) coupled with a shared L1
memory area. GAP’s cluster efficiently exploits the parallel nature of most DSP and Machine
Learning algorithms to allow them to be run at a lower clock rate for the same performance.
This, in turn, allows GAP9’s core voltage to be reduced bringing a quadratic reduction in
energy consumption. The cores all have their own program counter and can run different code
giving a large choice in parallelization strategies.

Figure 5. Cluster Architecture

To efficiently implement parallel algorithms all the synchronization primitives such as forks,
joins & semaphores are implemented in hardware. This allows a task to be forked to all cores
in under 5 cycles. When individual cores in a group complete a task, they enter a wait state in
one cycle where they are immediately clock gated. When all the cores complete in one cycle
they all start running again. This allows parallelism to be exploited in algorithms that require
frequent synchronization between different threads.

GAP’s cluster architecture allows dedicated hardware accelerators to be combined with the
cores. GAP9 includes a dedicated accelerator, Neural Engine 16 (NE16), for the streamed
multiply/accumulate (MAC) operations that characterize neural networks. NE16 has the same
shared access to the L1 memory as the cores and communicates with them via a sophisticated
event based controller. This allows the energy and speed benefits of a dedicated hardware
block to benefit from the flexibility of general purpose cores. NE16’s design can be focused on
delivering the best energy performance for the most critical operations without sacrificing
functionality filled in by the cluster cores.

7 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



Figure 6. NE16 Architecture

NE16 is however highly flexible, it can handle CNN, RNN or vector/matrix multiplications with
16- or 8-bit features and from 8 to 2 bit weights. It natively supports asymmetric, scaled
quantization. The varying precision can be allocated to individual layers. If float execution is
needed for some layers these can be executed by software kernels on the cluster cores with
vectorized IEEE16 or BFloat16 features and weights. Our kernel library includes a wide range
of neural network and signal processing algorithms fully optimized for the cluster, ready for use.

This tightly coupled combination of a programmable multi-core compute cluster and dedicated
hardware accelerator is unique in the market and is flexible enough to adapt to the latest,
state-of-the-art signal processing and AI techniques. We have found that while it is possible to
produce architectures that give greater efficiency on some synthetic example models, in real
life applications the cluster’s flexibility provides the optimal balance of network accuracy and
energy performance.

Explicit Memory Movement
Instruction and data movement incurs a large energy cost. GAP9’s cluster incorporates a
hierarchical instruction cache that ensures that a sequence of instructions used by more than
one core is only loaded once; however, GAP9 incorporates no data caching.

All the cores in GAP9 see exactly the same memory map; however, to improve performance,
data movement should be hidden behind processing as much as possible. Classically this is
achieved through some form of data cache. However, for GAP9’s workload, essentially streams
of images, sounds, and so on whose dimensions are already known at compile time a data

8 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



cache would be highly inefficient. The expected cache hit rate, how often loaded data would
actually be in the cache, would be in the order of 30%. This would result in stalls and misloads
causing loaded data to be thrown away - clearly a useless energy cost. In GAP9 sophisticated
Direct Memory Access (DMA) units are used to explicitly move data.

While this cuts down on energy consumption, the problem of correctly positioning data
elements for an operation or sequence of operations and properly scheduling data movement
between external L3 and internal L1 and L2 memory areas to bring data as close as possible to
the processing element using it is difficult to solve manually.

Figure 7. GAP9 Memory Bandwidth

We resolve this problem using a sophisticated optimization and code generation tool called the
GAP AutoTiler. The AutoTiler takes as input a series of models of a computation graph (this
could be a neural network graph for example) and the kernels that implement its operations
and configurable memory constraints and discovers a solution for parameter placement and
movement that minimizes the amount of times a piece of data is moved while ensuring that it is
in the cluster L1 when it is needed.

9 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



Figure 8. Overlap mem movement with computation

Once the AutoTiler has found a solution it produces human readable C code that does all the
data movement and calls the kernels in the correct sequence to implement the graph. It
produces three C functions that are called by the programmer: a graph constructor, a graph
runner and a graph destructor.

Figure 9. Generated user kernel pseudocode

The AutoTiler can be used by an algorithm designer to automate the production of code for all
data movement allowing them to concentrate on the parallelization of their algorithm as though
all data was available in the L1 cluster memory. It also makes up a fundamental building block
of GAP’s neural network toolchain that can take graphs in ONNX or TensorFlow Lite and
automatically produce highly optimized C code.

One of the unique elements of the AutoTiler solution is that parameters are moved on demand
to the cluster (mostly hidden behind computation) which means that there is no ‘load’ time for a

10 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



network. The network constructor created by the AutoTiler allocates L1 and L2 memory for the
graph and can preload certain parameters for faster execution but the memory used by it is
entirely configurable so multiple models can run side by side with minimal to no ‘start up’ time.

Familiar Development Tools
The AutoTiler is one in a series of tools that makes up the GAP SDK, available from our GitLab
repository. Since GAP is based on RISC-V cores the RISC-V GCC compiler is used to compile
code for GAP9. There is no assembly language used, no esoteric and difficult to learn
languages or tools. As much as possible we try to support a path from the tools most familiar to
our audiences: TensorFlow and Pytorch for machine learning, Matlab for signal processing, C
and C++ for embedded development. Along with well known RTOS environments like
FreeRTOS for application control.

The GAP9 SDK also includes a simulator, GVSOC, that allows code to be run on the
developers workstation. Full visibility of the activity inside the simulated GAP9 is provided
through signal traces in the GAP profiling tool. Many peripherals are simulated by GVSOC
allowing complete applications to be run. This provides truly unique observability and allows
problems to be tracked down quickly reducing development time.

Figure 10. View of signals inside GVSOC simulation

Developing Machine Learning Applications with GAP9
Machine learning engineers generally like to start working with well known neural networks and
then tune them for their applications. This can be a problem with energy constrained devices
since often they incorporate dedicated hardware accelerators that lack the flexibility to
implement these networks precisely.

11 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice

https://github.com/GreenWaves-Technologies/gap_sdk
https://github.com/GreenWaves-Technologies/gap_sdk


The GAP9 SDK includes a flexible translator called NNTOOL that can take standard
TensorFlow Lite or ONNX graph descriptions and produce highly optimized C code that
executes the graph using the extensive GAP kernel library. NNTOOL takes the graph as input
and produces a model for our AutoTiler tool that generates the C code.

NNTOOL can cope with quantizing the graph or using quantization information already present
in the exported graph. It optimizes the graph so it matches the available kernels and can be
used to analyze performance and accuracy of the graph in its translated form. NNTOOL
supports selective quantization of different layers of the graph with a choice of different bit
widths (including sub byte quantization) in both fixed and floating point formats. This
multi-precision capability ensures that accuracy can be maintained in even the most
demanding networks.

Our NNMenu repository contains a wide range of example graphs and applications that provide
an excellent starting point for a developer working on a new project. It includes open source
licensed implementations of graphs for object or person detection, attention detection, face
identification, sound analysis and more.

Some of those networks and their performance on GAP9 is shown in the table below. The
MobileNet performance is for no channel scaling.

Network Task Quant # MAC [M] Cycles [M] MAC/Cyc Latency @
370MHz [ms]

Energy @ 240MHz
[mJ or mW/fps]

MobileNet V1 224_1.0 ImageNet int8 568.9 16.98 33.50 45.89 2.34

MobileNet V2 224_1.0 ImageNet int8 301.8 13.91 21.70 37.59 1.95

ResNet18 ImageNet int8 1816.7 30.17 60.22 81.54 5.43

SqueezeNet ImageNet int8 843.4 17.07 49.41 46.14 2.467

EfficientNetLite0 ImageNet int8 1352.9 67.68 19.99 182.92 8.45

MCUNet ImageNet int8 127.1 10.76 11.81 29.08 1.34

SSD MobileNet V1 300_1.0 COCO int8 1258.1 34.63 36.33 93.59 4.98

SSD MobileNet V2 300_1.0 COCO int8 775.8 31.86 24.35 86.11 4.59

YamNet w/ Preprocessing
Sound
Classification int8 74.23 4.82 15.40 13.03 0.70

YoloX Nano *
Object
Detection int8 231.7 8.43 27.49 22.78 1.05

TinyDenoiser
Noise
reduction fp16 1.03 0.613 1.68 1.66 0.092

TinyDenoiser
Noise
reduction fp16-int8 1.03 0.239 4.31 0.65 0.033

Figure 11. GAP9 NN Performance

The measurements have been conducted on Greenwaves Technologies EVK using a shunt
resistor on J5, which also includes the power of external memories when needed by the Neural
Network and Gap9 IO (refer to GAP9_EVK User Manual for more details).

12 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



Developing Audio Applications with GAP9
Next generation hearables will need to combine algorithms such as Active Noise cancellation
demanding ultra-low latency, sample by sample filtering, 3D sound algorithms demanding
complex frequency domain filtering and room physics simulation and noise suppression or
acoustic environment detection requiring state-of-the-art neural network technology. And all of
this needs to happen at an energy level that doesn’t immediately drain a tiny battery. The
GAP9 cluster covers the frequency domain filtering, physics modeling and neural network
applications; however, sample by sample filtering at ultra-low latency requires dedicated
hardware.

This is where the GAP9 Smart Filtering Unit (SFU) comes in. The SFU provides a flexible block
that can implement sample by sample filtering on audio streams coming from and going to
PDM Audio interfaces, peripheral interfaces (including SAI, SPI, I2C) and L2 memory. Highly
configurable, dedicated hardware implements a wide range of filtering types along with
splitters, mixers, limiters and so on. The SFU integrates multi-channel / multi-tracker
asynchronous sample rate conversion and flexible PDM modulator and demodulators. All these
blocks can be combined into entirely user-defined multiple audio filtering graphs which can be
run simultaneously. Furthermore, filter coefficients can be dynamically updated without
stopping the graph and individual graphs can be loaded and unloaded.

The SFU’s internal precision can be set to two levels: 32 bit input + 32 state into 64 bits or 32
bit input + 64 bit state into 96 bits. This is considerably more precision than most DSPs, which
simplifies filter design. Also, since the SFU is a sub-system that you configure and then run,
there is no instruction load penalty since there are no instructions to load. This has both a
performance and energy benefit.

We see two primary scenarios for using the SFU: as a continuous filter graph between two
PDM interfaces for applications such as ANC and as a filtering coprocessor for the FC and
Cluster between blocks of samples in L2 for equalization and other sound effects.

The SFU enables real time operation on individual samples at a 768KHz sample rate, a
structural latency of 1.35μS. Since it sits in its own DVFS domain, its performance and energy
consumption can be precisely tuned to the task it is executing.

GAP9 incorporates 3 sophisticated SAI interfaces supporting up to 16 TDM inward, outward or
forwarded slots on each interface. Each interface also incorporates two 2 channel PDM
interfaces selectable as input or output. Each channel can be put into a clockless differential
PDM mode which can be directly connected to an analog, minimal latency sigma-delta
amplifier.

The GAP SDK includes our AudioTools framework providing a familiar interface via Mathworks
plugins for filter design and our GraphTool utility allowing integration of SFU filters, Cluster
Filtering and Neural Networks and graph elements running on the FC.

Our neural network development toolchain includes support for state-of-the-art networks
including recurrent elements and temporal convolutional networks.

We also have tight partnerships with companies working at the forefront of audio algorithmic
design for noise cancellation and suppression, speech enhancement, 3D sound and more.

13 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice



Security
Security is an important consideration for any edge device. GAP9 incorporates several features
to ensure that firmware is not tampered with and that confidential algorithms and neural
network parameters are protected.

GAP9 incorporates a bank of one time programmable eFuses that can be used to store keys
and to enable and disable firmware features. GAP9 protects system memory with a memory
protection unit and hardware machine and user level privilege modes. It also integrates a
physically unclonable function (PUF) hardware block that can be used to generate a unique
chip ID and seed a strong random number generator for cryptographic functions. Finally the
MicroDMA incorporates a hardware AES-128/256 encryption and decryption engine.

These hardware features enable the implementation of secure boot of encrypted firmware,
on-the-fly decryption of network parameters fetched from external memory and
compartmentalized application code execution.

Summary
Machine learning and particularly deep neural networks are being used in many applications.
GAP processors focus on bringing significant capabilities to highly power constrained
applications. Power constrained applications are generally devices that have to last for years
on battery like IoT sensors or devices that have a very small battery such as hearable or
wearable products. GAP processors are being used in smart building sensors that can detect
people’s location in images, wearable devices that locate objects in images and respond to
speech commands and hearable products that combine features such as sound environment
aware noise reduction or 3D sound rendering. In all these applications it is GAP9’s unique
combination of simple to use, flexible, ultra-low power and latency processing capability that
makes what seemed impossible in battery operated devices possible, now.

14 Confidential - Disclosed under NDA

We reserve the right to change or update information and to correct errors, inaccuracies, or omissions at any time
without prior notice


