
GREENWAVES TECHNOLOGIES

Application Note
AN004

 GAP8 E-FUSE SETTINGS
FOR RELIABLE BOOT

Version : Rel.1.0
Date : June, 2020

1. INTRODUCTION

By default, GAP8 expects code to be downloaded into its internal RAM through its JTAG interface and will

boot from there.

Whilst this is convenient for initial board bring-up, in a product GAP8 would normally boot from another

source.

Three main alternative boot mechanisms are offered with GAP8 :

- boot from an external HyperFlash connected to GAP8’s HyperBus interface

- boot from an external SPI Flash connected to GAP8’s SPIM0 interface (this would typically be a Quad-SPI

capable Flash to get decent throughput)

- boot from SPI Slave interface (this is an unsecured boot, although it may be handy in some cases – more

details later).

Upon power-up, a primary boot code located in ROM is executed. This code performs a number of initial

checks and configurations and then gets a secondary boot code (start of user’s application) from the

selected external source, copies it into the internal L2 RAM and executes it.

Selection of the source for booting is done through the programming of a specific e-fuse. In addition, a

minimal set of additional e-fuses must be programmed for reliable boot, they control the behavior of some

important checks and configurations performed by the primary boot code.

Programming an e-fuse bit consists of burning the associated fuse; once burnt the e-fuse is permanently set

to the selected value and cannot be modified anymore. Fuse programming typically occurs at board

production or commissioning. Some ‘user” fuses are also available to be used freely by the application.

GAP8’s SDK includes a fuse programming utility that enables the user to specify an array of fuses to be

burnt.

The next sections in this document detail what fuses should be programmed for proper boot.

Reference is made to e-fuse bits listed in a map provided as Appendix. In the interest of clarity, only those

e-fuses useful to customers are made explicit. Others are marked “Reserved”; they typically correspond to

options reserved for alternative configurations of GAP8 or for future use. The table will be updated if some of

those reserved fuses actually need to be activated in the future.

IMPORTANT NOTES:

1) A blank (non-programmed) e-fuse bit returns a Logic-0 when read. Programming, i.e. burning, an

e-fuse bit permanently sets it to Logic-1. There is then no means to set it back to Logic-0 .

Therefore, if an 8-bit fuse register is programmed to, say, 0x01 (so bit0 is set), then it will not be

possible to later program it to e.g. 0x02 (which would require to set bit1 and clear bit0) -- the setting

of bit1 will be incremental , bit0 will stay set and the valid programmed value will be 0x03.

2) To burn e-fuses, GAP8 requires a 2.5V+-10% voltage to be provided on pin VQPS (pin B28). In

general (i.e., except for cases where GAP8 e-fuses would have been pre-programmed), the

application board must provision the means to provide this voltage, either from some on-board

power supply or from an external source through a connector.

2. E-FUSE PROGRAMMING SEQUENCE

- a - Specify boot source :

> Program bits 3-5 (only those bits!) of fuse INFO1 (ID #0) to specify Flash or SPI Slave source :

 0x2 for Flash

 0x3 for SPI Slave

> If booting from Flash, specify SPI or HyperBus interface through bit 0 (only this bit!) of fuse INFO3 (ID

#37)

 ‘0’ for [Quad-]SPI

 ‘1’ for Hyperbus

- b - Configure Oscillator Convergence Checks

Case 1: with GAP8 Rev.B (early lot produced before year 2020)

> Program bit 1 (only this bit!) of fuse INFO2 (ID #1) to ‘1’ (configure_fll)

> Program fuse FLL_ASSERT_CYCLES (ID #33) to 0x1F (31 decimal)

Case 2: with GAP8 Rev.C (chips produced from year 2020 onwards)

> Program fuse INFO2 (ID #1) to 0x40

> Program fuse XTAL_MAX (ID #30,31) to 0xFF,0xFF

> Program fuse XTAL_MIN to 0x0010 -- i.e. 0x10 into Fuse ID #28

> Program fuse XTAL_DELTA to 0x4000 -- i.e. 0x40 into Fuse ID #27

> Program bit 7 (only this bit!) of fuse INFO1 (ID #0) to ‘1’

Beware: the last setting indicated must be performed last – i.e., do not set bit 7 of INFO1 (fuse ID#0) before

setting the other fuses else boot may fail

- c - [Optional] Boot source locking mechanism

By default, even after specifying an alternative boot source it remains possible to boot from JTAG. This is

convenient for board bring-up and debug, but is often not acceptable in a product, as this means the

complete memory map of GAP8 is accessible from outside GAP8 – which in many cases would be a serious

security concern.

It is possible to permanently disable boot from JTAG and SPI Slave. To do so :

> Program bit 5 (only this bit!) of fuse INFO2 (ID #1) to ‘1’

Note setting this bit disables both boot from JTAG and boot from SPI Slave. This entails that this fuse cannot

be used in an application that would need to boot from SPI Slave interface. As a result, boot from SPI Slave

is highly unsecured and should be implemented only with the full knowledge of those implications. The full

memory space of GAP8 is then visible to any agent able to tap the SPI slave interface.

- d – [Optional] Encrypted code

It is possible to store code in AES-encrypted form in the external Flash. Specific e-fuses can be used to store

encryption keys. Please contact GreenWaves technologies for further information, should you require this

feature.

APPENDIX – GAP8 E-FUSE MAP

ID NAME Bits Bits description
0 INFO1

 GAP8 REV.B ONLY 7 Reserved e-fuse bit, Do not modify

 GAP8 REV.C ONLY 7 Check crystal oscillator stabilization

 6 Reserved e-fuse bit, Do not modify

 5-3 Boot mode (0: jtag mode, 1: stop command, 2:flash, 3:
spis, 4: wait command, 5: wait end command)

 2-0 Reserved e-fuse bits, Do not modify

1 INFO2

 7 Reserved e-fuse bits, Do not modify

 6 Ref clock wait (1=enabled). This makes the boot code
wait for the number of ref clock edges specified in efuse
WAIT_CYCLES @0x35-0x36 but only after a cold boot.

 5 JTAG and SPI Slave Lock (1=enabled i.e. jtag & spis are
not accessible anymore)

 4-3 SPIM clock divider

 2 Bypass FLL lock (1=enabled, i.e. FLL is configuring
without being locked).

 1 Configure FLL (1=enabled) according to Reg.32 and 33
for GAP8 Rev.B, Reg.58 and 59 for GAP8 Rev.C.

 0 Reserved e-fuse bit, Do not modify

2-17 RESERVED Reserved e-fuse bits, Do not modify

18-25 RESERVED Reserved e-fuse bits, Do not modify

GAP8 REV.B ONLY

27-26 RESERVED Reserved e-fuse bits, Do not modify

28 RESERVED Reserved e-fuse bits, Do not modify

29 RESERVED Reserved e-fuse bits, Do not modify

30 RESERVED Reserved e-fuse bits, Do not modify

31 FLL FREQ Reserved e-fuse bits, Do not modify

32 FLL
TOLERANCE

7-0 Defines the excursion allowed on FLL DCO code while the
32KHz oscillator is converging. The smaller the value, the
tighter the tolerance.

33 FLL ASSERT
CYCLES

7-0 Minimum number of reference clock cycles (32KHz nom.)
during which the FLL frequency (50MHz nom.) must stay

within the limits defined by FLL_TOLERANCE for
convergence check to be deemed successful.

GAP8 REV.C ONLY

27-26 XTAL DELTA 15-0 Maximum allowed deviation in number of FLL clock cycles
between two consecutive reference clock edges (used in
conjunction with XTAL_MIN below). Is a percentage
expressed in Q15 fractional format.

29-28 XTAL MIN 15-0 Minimum number of reference clock cycles (32KHz nom.)
during which the oscillator frequency must stay within the
limits defined by XTAL_DELTA for convergence check to
be deemed successful.

31-30 XTAL MAX 7-0 Maximum number of reference cycles (32KHz nom.)
during which convergence is checked – after that
procedure is aborted and boot will fail.

32 RESERVED Reserved e-fuse bits, Do not modify

34 RESERVED Reserved e-fuse bits, Do not modify

36-35 WAIT CYCLES 15-0 Added latency (in number of ref clock cycles, 32KHZ
nom.) before going on with the boot procedure. Only done
when pads are accessed and only from cold boot.

37 INFO3

 7 Ref clock wait after deep sleep. This makes the boot code
wait for the number of ref clock edges specified in another
efuse before any pad is accessed, but only if the chip is
waking-up from deep sleep mode.

 6 Flash reset wait. Wait for a certain number of ref clock
edges (specified in efuse FLASH_RESET_WAIT @0x50)
after the flash has been resetted.

 5 Flash init. Issue a few specific flash commands to initialize
it. Only on hyperflash, this issues commands 0xAA, 0x55,
0x38, 0x8e0b

 4 Flash wakeup. Issue a flash wake-up command during
flash setup.

 3 Flash wait. Once the flash setup is done, wait for a certain
number of ref clock edges (specified in efuse
FLASH_WAIT @0x45).

 2 Flash reset. Issue a flash reset before using it.

 1 Set SPIM clock divider (taken from efuse INFO2 bits 3
and 4). If not set the divider is 2.

 0 Flash type (0=[Quad-]SPI, 1=HyperBus)

38 INFO4 Reserved e-fuse bits, Do not modify

39 INFO5

 7 Hyper latency. Hyper latency in the hyper controller.

 6 Hyper delay. Hyper delay in the hyper controller.

 5 Hyperchip size. Give the 4 th byte of the offset to get the
start address of the chip connected to chip select 1.

 4-3 Pad config. Pad configuration for the flash,spis.

 2-1 Flash_itf. Chip interface ID for the flash.

 0 Flash chip-select. For SPI, 0=CS0, 1=CS1. For
hyperflash, 1 means hyperflash is on cs 0, 0 for the
reverse.

40 INFO6 Reserved e-fuse bits, Do not modify

41 RESERVED Reserved e-fuse bits, Do not modify

42 RESERVED Reserved e-fuse bits, Do not modify

43 RESERVED Reserved e-fuse bits, Do not modify

44 RESERVED Reserved e-fuse bits, Do not modify

45 FLASH_WAIT 7-0 Added waiting time after the external Flash has been
configured, expressed as number of reference clock
cycles (32KHz nom.) -- enabled by bit 3 of INFO3 @0x37

46 HYPERCHIP_SI
ZE

7-0 Size in bytes of the chip connected to hyper chip select 0

48-47 RESERVED Reserved e-fuse bits, Do not modify

49 RESERVED Reserved e-fuse bits, Do not modify

50 FLASH_RESET
_WAIT

7-0 Added waiting time after the external Flash has been
reset, expressed as number of reference clock cycles
(32KHz nom.) -- meaningful only if bits 2 and 6 of INFO3
@0x37 are set

51 HYPER_LATEN
CY

 Reserved e-fuse bits, Do not modify

53-52 RESERVED Reserved e-fuse bits, Do not modify

55-54 FLASH ID 7-0 Expected flash ID when checking it.

GAP8 REV.B ONLY

56-127 USER_FUSES “User” e-Fuse bits. Freely available for private use by the
final application.

GAP8 REV.C ONLY
57 RESERVED Reserved e-fuse bits, Do not modify

58 FLL
TOLERANCE

7-0 Defines the excursion allowed on FLL DCO code while the
32KHz oscillator is converging. The smaller the value, the
tighter the tolerance.

59 FLL ASSERT
CYCLES

7-0 Minimum number of reference clock cycles (32KHz nom.)
during which the FLL frequency (50MHz nom.) must stay
within the limits defined by FLL_TOLERANCE for
convergence check to be deemed successful.

60 INFO7 Reserved e-fuse bits, Do not modify

62-61 BURST_SIZE Hyper burst size (default is 1024).

63 MODE_GPIO Reserved e-fuse bits, Do not modify

64 MODE_PAD Reserved e-fuse bits, Do not modify

65-127 USER_FUSES “User” e-Fuse bits. Freely available for private use by the
final application.

